Подпишись и читай
самые интересные
статьи первым!

Первооткрывателем растительной клетки был. История открытия клетки и этапы развития цитологии. Основные положения современной клеточной теории

О существовании клеток люди узнали после изобретения микроскопа. Самый первый примитивный микроскоп изобрел голландский шлифовальщик стекол З. Янсен (1590 г.), соединив вместе две линзы.

Английский физик и ботаник Р. Гук, рассмотрев срез пробки пробкового дуба обнаружил, что она состоит из ячеек, похожих на соты, которые он назвал клетками (1665 г.). Да, да... это тот самый Гук, именем которого назван известный физический закон.


Рис. "Срез пробкового дерева из книги Роберта Гука, 1635-1703"



В 1683 г. нидерландский исследователь А. Ван Левенгук, усовершенствовав микроскоп, наблюдал живые клетки и впервые описал бактерии.



Российский ученый Карл Бэр в 1827 г. обнаружил яйцеклетку млекопитающих. Этим открытием он подтвердил ранее высказанную идею английского врача У. Гарвея о том, что все живые организмы развиваются из яйца.

Ядро было сначала обнаружено в растительных клетках английским биологом Р. Брауном (1833 г.).



Большое значение для понимания роли клетки в живой природе имели труды немецких ученых: ботаника М. Шлейдена и зоолога Т. Шванна. Они первыми сформулировали клеточную теорию , основной пункт которой утверждал, что все организмы, в том числе растительные и животные, состоят из простейших частиц - клеток, а каждая клетка - самостоятельное целое. Однако в организме клетки действуют совместно, формируя гармоничное единство.

Позднее в клеточную теорию добавлялись новые открытия. В 1858 г. немецкий ученый Р. Вирхов обосновал, что все клетки образуются из других клеток путем клеточного деления: "всякая клетка из клетки".

Клеточная теория послужила основой возникновения в XIX в. науки цитологии. К концу XIX в. благодаря усложнению микроскопической техники были открыты и изучены структурные компоненты клеток и процесс их деления. Электронный микроскоп позволил исследовать тончайшие структуры клеток. Было обнаружен удивительное сходство в тонком строении клеток представителей всех царств живой природы.


Основные положения современной клеточной теории:
  • клетка - структурно-функциональная единица всех живых организмов, а также единица развития;
  • клеткам присуще мембранное строение;
  • ядро - главная часть эукариотической клетки;
  • клетки размножаются только делением;
  • клеточное строение организмов свидетельствует о том, что растения и животные имеют единое происхождение.

Великий русский физиолог И. П. Павлов писал:

Науку принято сравнивать с постройкой. Как здесь, так и там трудится много народа, и здесь и там происходит разделение труда. Кто составляет план, одни кладут фундамент, другие возводят стены и так далее...

«Постройка» клеточной теории началась почти 350 лет назад.

Итак, 1665 год, Лондон, кабинет физика Роберта Гука. Хозяин настраивает микроскоп собственной конструкции. Профессору Гуку тридцать лет, он окончил Оксфордский университет, работал ассистентом у знаменитого Роберта Бойля.

Гук был неординарным исследователем. Свои попытки заглянуть за горизонт человеческих познаний он не ограничивал какой-либо одной областью. Проектировал здания, установил на термометре «точки отсчёта» — кипения и замерзания воды, изобрёл воздушный насос и прибор для определения силы ветра... Потом увлёкся возможностями микроскопа. Он рассматривал под стократным увеличением всё, что попадается под руку, — муравья и блоху, песчинку и водоросли. Однажды под объективом оказался кусочек пробки. Что же увидел молодой учёный? Удивительную картину — правильно расположенные пустоты, похожие на пчелиные соты. Позднее такие же ячейки он нашёл не только в отмершей растительной ткани, но и в живой. Гук назвал их клетками (англ. cells) и вместе с полусотней других наблюдений описал в книге «Микрография». Однако именно это наблюдение под № 18 принесло ему славу первооткрывателя клеточного строения живых организмов. Славу, которая самому Гуку была не нужна. Вскоре его захватили другие идеи, и он больше никогда не возвращался к микроскопу, а о клетках и думать забыл.

Зато у других учёных открытие Гука пробудило крайнее любопытство. Итальянец Марчелло Мальпиги называл это чувство «человеческим зудом познания». Он также стал рассматривать в микроскоп разные части растений. И обнаружил, что те состоят из мельчайших трубочек, мешочков, пузырьков. Разглядывал Мальпиги под микроскопом и кусочки тканей человека и животных. Увы, техника того времени была слишком слаба. Поэтому клеточное строение животного организма учёный так и не распознал.

Дальнейшая история открытия продолжилась в Голландии. Антони ван Левенгук (1632—1723) никогда не думал, что его имя будет стоять в ряду великих учёных. Сын промышленника и торговца из Делфта, он тоже торговал сукном. Так и прожил бы Левенгук незаметным коммерсантом, если бы не его страстное увлечение да любопытство. На досуге он любил шлифовать стёкла, изготовляя линзы. Голландия славилась своими оптиками, но Левенгук достиг небывалого мастерства. Его микроскопы, состоявшие лишь из одной линзы, были гораздо сильнее тех, которые имели несколько увеличительных стёкол. Сам он утверждал, что сконструировал 200 таких приборов, дававших увеличение до 270 раз. А ведь ими было очень трудно пользоваться. Вот что писал об этом физик Д. С. Рождественский: «Вы можете себе представить ужасное неудобство этих мельчайших линзочек. Объект вплотную к линзе, линза вплотную к глазу, носа девать некуда». Кстати, Левенгук до последних дней, а дожил он до 90 лет, сумел сохранить остроту зрения.

Через свои линзы естествоиспытатель увидел новый мир, о существовании которого не догадывались даже отчаянные фантазёры. Больше всего поразили Левенгука его обитатели — микроорганизмы . Эти мельчайшие существа обнаруживались везде: в капле воды и комке земли, в слюне и даже на самом Левенгуке. С 1673 г. подробные описания и зарисовки своих удивительных наблюдений исследователь отправлял в Лондонское королевское общество. Но учёные мужи не спешили ему верить. Ведь было задето их самолюбие: «неуч», «профан», «мануфактурщик», а туда же, в науку. Левенгук тем временем неустанно посылал новые письма о своих замечательных открытиях. В итоге академикам пришлось признать заслуги голландца. В 1680 г. Королевское общество избрало его полноправным членом. Левенгук стал мировой знаменитостью. Отовсюду в Делфт ехали смотреть на диковины, открываемые его микроскопами. Одним из самых знатных гостей был русский царь Пётр I — большой охотник до всего нового... Левенгуку, не прекращавшему исследований, многочисленные гости только мешали. Любопытство и азарт подгоняли первооткрывателя. За 50 лет наблюдений Левенгук открыл более 200 видов микроорганизмов и первым сумел описать структуры, которые, как мы теперь знаем, являются клетками человека. В частности, он увидел эритроциты и сперматозоиды (по его тогдашней терминологии, «шарики» и «зверьки»). Конечно, Левенгук и не предполагал, что это были клетки. Зато он рассмотрел и очень подробно зарисовал строение волокна сердечной мышцы. Поразительная наблюдательность для человека с такой примитивной техникой!

Антони ван Левенгук был, пожалуй, единственным за всю историю построения клеточной теории учёным без специального образования. Зато все остальные, не менее знаменитые исследователи клеток учились в университетах и были людьми высокообразованными. Немецкий учёный Каспар Фридрих Вольф (1733—1794), например, изучал медицину в Берлине, а затем в Галле. Уже в 26 лет он написал труд «Теория зарождения», за который был подвергнут на родине резкой критике коллег. (После этого по приглашению Петербургской академии наук Вольф приехал в Россию и остался там до конца жизни.) Что же нового для развития клеточной теории дали исследования Вольфа? Описывая «пузырьки», «зёрнышки», «клетки», он увидел их общие черты у животных и растений. Кроме того, Вольф впервые предположил, что клетки могут иметь определённое значение в развитии организма. Его труды помогли другим учёным правильно понять роль клеток.

Теперь хорошо известно, что главная часть клетки — ядро. Впервые, кстати, описал ядро (в эритроцитах рыб) Левенгук ещё в 1700 г. Но ни он, ни многие другие видевшие ядро учёные не придавали ему особого значения. Лишь в 1825 г. чешский биолог Ян Эвангелиста Пуркинье (1787—1869), исследуя яйцеклетку птиц, обратил внимание на ядро. «Сжатый сферический пузырёк, одетый тончайшей оболочкой. Он... преисполнен производящей силой, отчего я и назвал его "зародышевый пузырёк", — писал учёный.

В 1837 г. Пуркинье сообщил научному миру результаты многолетней работы: в каждой клетке организма животного и человека есть ядро. Это была очень важная новость. В то время было известно лишь о наличии ядра в растительных клетках. К такому выводу пришёл английский ботаник Роберт Броун (1773—1858) за несколько лет до открытия Пуркинье. Броун, кстати, и ввёл в употребление сам термин «ядро» (лат. nucleus). А Пуркинье, к сожалению, не сумел обобщить накопленные знания о клетках. Прекрасный экспериментатор, он оказался слишком осторожен в выводах.

К середине XIX в. наука наконец вплотную подошла к тому, чтобы достроить здание под названием «клеточная теория». Немецкие биологи Маттиас Якоб Шлейден (1804—1881) и Теодор Шванн (1810—1882) были друзьями. В их судьбах немало общего, но главное, что их объединяло, — «человеческий зуд познания» и страсть к науке. Сын врача, юрист по образованию, Маттиас Шлейден в 26 лет решил круто изменить свою судьбу. Он вновь поступил в университет — на медицинский факультет и по окончании его занялся физиологией растений. Целью его работы было понять, как происходит образование клеток. Шлейден совершенно справедливо полагал, что ведущая роль в этом процессе принадлежит ядру. Но, описывая возникновение клеток, учёный, увы, ошибался. Он считал, что каждая новая клетка развивается внутри старой. А это, конечно же, не так. Кроме того, Шлейден думал, что клетки животных и растений не имеют ничего общего. Вот почему не он сформулировал основные постулаты клеточной теории. Это сделал Теодор Шванн.

Воспитываясь в очень религиозной семье, Шванн мечтал стать священнослужителем. Для того чтобы лучше подготовиться к духовной карьере, он поступил на философский факультет Боннского университета. Но вскоре любовь к естественным наукам пересилила, и Шванн перешёл на медицинский факультет. После его окончания он работал в Берлинском университете, где изучал строение спинной струны — основного органа нервной системы животных из отряда круглоротых (класс водных позвоночных животных, к которым относятся миноги и миксины). Учёный открыл оболочку нервных волокон у человека (названную позже шванновской). Серьёзной научной работой Шванн занимался всего пять лет. В расцвете сил и славы он неожиданно бросил исследования, уехал в маленький тихий Льеж и стал преподавать. Религия и наука так и не сумели ужиться в этом замечательном человеке.

В октябре 1837 г. в Берлине произошло важнейшее для науки событие. Случилось всё в небольшом ресторанчике, куда зашли перекусить два молодых человека. Годы спустя один из них — Теодор Шванн вспоминал: «Однажды, когда я обедал с господином Шлейденом, этот знаменитый ботаник указал мне на важную роль, которую ядро играет в развитии растительных клеток. Я тотчас же припомнил, что видел подобный же орган в клетках спинной струны, и в тот же момент понял крайнюю важность, которую будет иметь моё открытие, если я сумею показать, что в клетках спинной струны это ядро играет ту же роль, что и ядро растений в развитии их клеток... С этого момента все мои усилия были направлены к нахождению доказательств предсуществования ядра клетки».

Усилия оказались не напрасны. Уже через два года вышла в свет его книга «Микроскопические исследования о соответствии в структуре и росте животных и растений». В ней были изложены основные идеи клеточной теории. Шванн не только первым увидел в клетке то, что обьединяет и животные, и растительные организмы, но и показал сходство в развитии всех клеток.

Конечно, авторство со Шванном разделяют и все учёные, возводившие «постройку». А особенно Маттиас Шлейден, подавший другу блестящую идею. Известен афоризм: «Шванн стоял на плечах Шлейдена». Его автор — Рудольф Вирхов, выдающийся немецкий биолог (1821—1902). Вирхову же принадлежит и другое крылатое выражение: «Omnis cellula е cellula», что с латыни переводится «Всякая клетка от клетки». Именно этот постулат стал триумфальным лавровым венком для теории Шванна.

Рудольф Вирхов изучал значение клетки для всего организма. Ему, окончившему медицинский факультет, особенно интересна была роль клеток при заболеваниях. Работы Вирхова о болезнях послужили базой для новой науки — патологической анатомии. Именно Вирхов ввёл в науку о болезнях понятие клеточной патологии. Но в своих исканиях он несколько перегнул палку. Представляя живой организм как «клеточное государство», Вирхов считал клетку полноценной личностью. «Клетка... да, это именно личность, притом деятельная, активная личность, и её деятельность есть... продукт явлений, связанных с продолжением жизни».

Шли годы, развивалась техника, появился электронный микроскоп, дающий увеличение в десятки тысяч раз. Учёные сумели разгадать немало тайн, заключённых в клетке. Было подробно описано деление, открыты клеточные органеллы, поняты биохимические процессы в клетке, наконец, была расшифрована структура ДНК. Казалось бы, ничего нового о клетке уже не узнать. И всё же есть ещё много непонятого, неразгаданного, и наверняка будущие поколения исследователей положат новые кирпичики в здание науки о клетке!

– элементарная структурно-функциональная единица всех живых организмов Она может существовать как отдельный организм (бактерии, простейшие, водоросли, грибы), так и в составе тканей многоклеточных животных, растений и грибов.

История изучения клетки. Клеточная теория.

Жизнедеятельность организмов на клеточном уровне изучает наука цитология или биология клетки. Возникновение цитологии как науки тесно связано с созданием клеточной теории, самого широкого и фундаментального из всех биологических обобщений.

История изучения клетки неразрывно связана с развитием методов исследований, в первую очередь с развитием микроскопической техники. Впервые микроскоп применил для исследований растительных и животных тканей английский физик и ботаник Роберт Гук (1665 г.). Изучая срез пробки сердцевины бузины, он обнаружил отдельные полости – ячейки или клетки.

В 1674 г. знаменитый голландский исследователь Антони де Левенгук усовершенствовал микроскоп (увеличивал в 270 раз), обнаружил в капле воды одноклеточные организмы. В зубном налёте обнаружил бактерий, открыл и описал эритроциты, сперматозоиды, а из животных тканей описал строение сердечной мышцы.

  • 1827 г. – наш соотечественник К. Бэр открыл яйцеклетку.
  • 1831 г. – английский ботаник Роберт Броун описал ядро в клетках растений.
  • 1838 г. – немецкий ботаник Матиас Шлейден выдвинул идею об идентичности растительных клеток с точки зрения их развития.
  • 1839 г. – немецкий зоолог Теодор Шванн сделал окончательное обобщение, что клетки растений и животных имеют общее строение. В своей работе «Микроскопические исследования о соответствии в структуре и росте животных и растений» он сформулировал клеточную теорию, согласно которой клетки являются структурной и функциональной основой живых организмов.
  • 1858 г. – немецкий патолог Рудольф Вирхов применил клеточную теорию в патологии и дополнил её важными положениями:

1) новая клетка может возникнуть только из предшествующей клетки;

2) болезни человека имеют в своей основе нарушение строения клеток.

Клеточная теория в современном виде включает три главных положения:

1) клетка – элементарная структурная, функциональная и генетическая единица всего живого – первоисточник жизни.

2) новые клетки образуются в результате деления предшествующих; клетка – элементарная единица развития живого.

3) структурно-функциональными единицами многоклеточных организмов являются клетки.

Клеточная теория оказала плодотворное влияние на все направления биологических исследований.

Клетка: история изучения

Основная структурная и функциональная единица любого живого организма – клетка. Лишь вирусы, положение которых в системе живого не вполне ясно, лишены клеточной структуры. Клетка может существовать либо как отдельный (одноклеточный) организм (бактерии, простейшие, многие водоросли и грибы), либо в составе тела многоклеточных животных, растений и грибов. Но даже в составе самых крупных организмов каждая из его миллиардов клеток относительно независима и выполняет определенную функцию.

История изучения клетки неразрывно связана с развитием методов исследования, в первую очередь с развитием микроскопической техники. Первый простой микроскоп появился в конце XVI столетия. Он был построен в Голландии. Об устройстве этого увеличительного прибора известно, что он состоял из трубы, прикрепленной к подставке и имеющей два увеличительных стекла. Первый, кто понял и оценил огромное значение микроскопа, был английский физик и ботаник Роберт Гук. Он впервые применил микроскоп для исследования растительных и животных тканей. В 1665 г. Роберт Гук впервые описал строение некоторых растительных тканей, в частности пробки, состоящей из маленьких ячеек, ограниченных перегородками, в сочинении "Микрография, или некоторые физиологические описания мельчайших тел, сделанные посредством увеличительных стекол". Так была открыта клетка. Изучая срез, приготовленный из пробки и сердцевины бузины, Р. Гук заметил, что в состав их вводит множество очень мелких образований, похожих по форме на ячейки пчелиных сот. Он дал им название ячейки или клетки Термин "клетка" утвердился в биологии, хотя Р. Гук видел не собственно клетки, а оболочки растительных клеток.

Усилиями многих ученых, главным образом XIX и первой половины XX в., сложилась особая наука о клетке, получившая название цитологии.

Оптический прибор приобрел значение ценного научного инструмента благодаря усовершенствованиям знаменитого голландского исследователя Антони ван Левенгука. Его микроскоп позволил увидеть живые клетки при увеличении в 270 раз.

Изучение внутреннего строения живых организмов связано с изобретением микроскопа. В 1665 г. английский ученый Роберт Гук, рассматривая тонкий срез древесной пробки с помощью сконструированного им микроскопа, сделал удивительное открытие. Он обнаружил, что древесная пробка состоит не из сплошной массы, а из очень мелких ячеек, разделенных перегородками. Р. Гук назвал эти ячейки «sellula» - клетками. Впоследствии целый ряд ученых, исследуя под микроскопом ткани различных растений и животных, также определили, что все они состоят из клеток. Так, голландский ученый А. Левенгук в 1680 г. обнаружил в крови красные кровяные тельца - эритроциты.

Долгое время главной частью клетки считали ее оболочку. Лишь в начале XIX в. ученые обратили внимание на полужидкое студенистое содержимое, заполняющее клетку. В 1831 г. английский ботаник Б. Броун обнаружил в клетках ядро, а в 1839 г. чешский ученый Я. Пуркине предложил называть жидкое содержимое клетки протоплазмой . Таким образом, в начале XIX в. ученые пришли к заключению, что организмы растений и животных состоят из клеток. В 1838-1839 гг. немецкие ученые - ботаник М. Шлейден и зоолог Т. Шванн, - обобщив имевшиеся в то время данные, разработали основы клеточной теории, которая в дальнейшем была развита многими исследователями. Немецкий врач Р. Вирхов доказал, что вне клеток нет жизни, что главная составная часть клетки - ядро и что клетки образуются только от клеток путем их деления. Дальнейшее совершенствование техники, создание электронного микроскопа и методы молекулярной биологии позволили глубже проникнуть в изучение клетки, познать ее сложную структуру и многообразие протекающих в ней биохимических процессов

Включайся в дискуссию
Читайте также
Святые и чудотворцы. Леонтий Ростовский. Леонтий (Стасевич), православный святой Тропарь святителям Ростовским
Церковь георгия победоносца на псковской горе
Икона божией матери